

IBM Systems & Technology Group

© 2011 IBM Corporation

Peter Relson
IBM Poughkeepsie
relson@us.ibm.com
2 March 2011

Using z/OS Macros
in Metal C

Session 8739

Permission is granted to SHARE Inc. to publish this
presentation paper in the SHARE Inc. proceedings;
IBM retains the right to distribute copies of this
presentation to whomever it chooses.

1

©2011 IBM Corporation

* 2

The following are trademarks of the International B usiness Machines Corporation in the United States a nd/or other countries.

The following are trademarks or registered trademar ks of other companies.

InfiniBand is a registered trademark of the InfiniBand Trade Association (IBTA).
Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a trademark of Linux Torvalds in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
All other products may be trademarks or registered trademarks of their respective companies.
The Open Group is a registered trademark of The Open Group in the US and other countries.

Notes:
Performance is in Internal Throughput Rate (ITR) ra tio based on measurements and projections using sta ndard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user' s job stream, the I/O configuration, the storage co nfiguration, and the workload processed.
Therefore, no assurance can be given that an indiv idual user will achieve throughput improvements equ ivalent to the performance ratios stated here.
IBM hardware products are manufactured from new par ts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this pr esentation are presented as illustrations of the m anner in which some customers have used IBM product s and the results they may have achieved.
 Actual environmental costs and performance charact eristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or featu res discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM busi ness contact for information on the product or serv ices available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their publi shed announcements. IBM has not tested those produ cts and cannot confirm the
performance, compatibility, or any other claims rel ated to non-IBM products. Questions on the capabil ities of non-IBM products should be addressed to th e suppliers of those products.
Prices subject to change without notice. Contact y our IBM representative or Business Partner for the most current pricing in your geography.
This presentation and the claims outlined in it wer e reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for
compliance with local laws.

* Registered trademarks of IBM Corporation

AIX*
CICS*
DB2*
DFSMSdss
DFSMShsm
DFSMSrmm
DS6000
DS8000*
FICON*

FlashCopy*
HiperSockets
IBM*
IBM eServer
IBM logo*
IMS
Infiniband*
Language Environment*

Parallel Sysplex*
ProductPac*
RACF*
Redbooks*
REXX
RMF
ServerPac*
SystemPac*

System Storage
System z
System z9
System z10
System z10 Business Class
Tivoli*
WebSphere*
z9*

Trademarks
z10
z10 BC
z10 EC
z/OS*
zSeries*

©2011 IBM Corporation

* 3

Abstract

A detailed exploration of using z/OS assembler macros in
Metal C, focusing on symbolic substitution. The talk will
concentrate on the IBM Health Checker for z/OS macros (to
help you understand a key part of writing checks in Metal C).
It will help you to figure out how to identify to Metal C the
inputs and outputs so that you get the result you want.

©2011 IBM Corporation

* 4

Introduction

� History: a C/C++ program wanting to invoke assembler
statements for which there was no high level language
analog or service, let alone an assembler macro, had to
call a separate routine, passing parameter data, and that
separate routine, in assembler, would create the macro
invocation

� Metal C lets you embed the assembler statements.
� But how do you tell Metal C how the assembler statements

(including macros) are to access your C variables?
� We will concentrate on invoking macros, as most things

that can be accomplished through simple assembler
instructions can be accomplished within the high level
language.

©2011 IBM Corporation

* 5

Agenda

� __ASM statement as it applies to macros, with
recommendations

� Use of __ASM with the HZSxxxxx macros, showing reentrant
forms throughout, identifying useful techniques

� Use of __ASM with simple instructions
� Use of our newly-learned techniques on a non-HZSxxxxx

macro

©2011 IBM Corporation

* 6

Metal C Support: __asm

__asm statement when GENASM compiler option is in effect
The syntax of __asm (loosely) is
__asm ("assembler statement"

 : /* output definitions */

 : /* input definitions */

 : /* clobber list */

);

Note: __ ASM does not work, it must be __ asm

©2011 IBM Corporation

* 7

Metal C Support: __asm example

__asm(" HZSFMSG REQUEST=CHECKMSG,"

"MGB=%3,"

"RETCODE=%0,"

"RSNCODE=%1,"

"MF=(E,%2,COMPLETE)"

: "=m"(theRetcode), "=m"(rsn), "=m"(PListFMsg)

: "m"(MGB)

: "r0","r1","r14","r15");

We will use this example in exploring the syntax. As we will see, this
example uses symbols and identifies their input / output nature and what
registers the compiler is to assume are clobbered.

©2011 IBM Corporation

* 8

Metal C Support (cont)

� “%n” refers to the nth (0-origin) output or input symbol
definition

� The definitions identify the storage forms -- memory ("m")
or register ("r") -- and also differentiate output from
input+output. An input and/or output definition is of the form
“ps”(variable) -- could be “ps”(expression)
� “p” -- the “prefix” -- null, or “=” for “output” or “+” for

“input and output”
� “s” -- the storage classification -- “m” for memory or “r”

for register
� “variable” -- the Metal C variable to be used

� You can use \n to identify new line (i.e., in this case to
delimit statements when you have more than one)

©2011 IBM Corporation

* 9

Metal C Support (cont)

Recommendations
� Always tell the truth to the compiler.

� If the __asm statement(s) can result in updating your
variable, then make sure that this item is identified as an
"output". This includes return code and reason code.

� If the __asm statement(s) require your variable as input
and also update it, then make sure that this item is
identified as an "output" and an "input".

The input / output nature of a macro parameter should be
identified in the product documentation for that parameter.

©2011 IBM Corporation

* 10

Metal C Support: Output

Between the first and second colons are “output” th ings
__asm(" HZSFMSG REQUEST=CHECKMSG,"

"MGB=%3,"

"RETCODE=%0,"

"RSNCODE=%1,"

"MF=(E,%2,COMPLETE)"

: "=m"(theRetcode), "=m"(rsn), "=m"(PListFMsg)

: "m"(MGB)

: "r0","r1","r14","r15");

� Output things have a prefix of “=” or “+” (“=” means output
only, “+” means output and input)

� “m” means to select register n, substitute with “0(n)” and
set the variable's address into register n “before” doing the
assembler statement(s)

� %0 is theRetcode, %1 is rsn, %2 is PlistFMsg, %3 is MGB

©2011 IBM Corporation

* 11

Metal C Support: Output

Example:
__asm(“ HZSFMSG ...RETCODE=%0”

 : “=m”(theRetcode)

 : /* … */

 : /* … */);
� output specification: "=m"(theRetcode)
� within the __asm macro invocation: RETCODE=%0
� Compiler picks a register (for example, 2) so the generated

assembler has RETCODE=0(2)
� The compiler puts the address of theRetcode into register 2

"before"
� The macro expansion generates ST 15,retcode_operand --

ST 15,0(2) -- after calling the service

©2011 IBM Corporation

* 12

Metal C Support: Output

“r” means to select register n, substitute with “n” and store
from register n into the variable “after”
Example:
__asm(“ HZSFMSG ...RETCODE=%0”
 : “=r”(theRetcode)

 : /* … */ : /* … */);
� output specification: "=r"(theRetcode)
� within the __asm macro invocation: RETCODE=(%0)
� Compiler picks a register (for example, 2) so the generated

assembler has RETCODE=(2)
� The macro expansion generates

LR retcode_reg,15 (e.g., LR 2,15) after calling the service
� The compiler stores from register 2 into theRetcode

©2011 IBM Corporation

* 13

Metal C Support: Output (cont)

� Which is better? It depends on the complexity of the
compiler's finding where to store. Probably the “=m” form
is better in more cases. But the difference is miniscule.

� As we'll see, if we had used "m" in the "input" section
instead of in the output section, we would have gotten the
identical behavior. But the output form tells the truth.

©2011 IBM Corporation

* 14

Metal C Support: __asm example
(same as before, for reference)

__asm(" HZSFMSG REQUEST=CHECKMSG,"

"MGB=%3,"

"RETCODE=%0,"

"RSNCODE=%1,"

"MF=(E,%2,COMPLETE)"

: "=m"(theRetcode), "=m"(rsn), "=m"(PListFMsg)

: "m"(MGB)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 15

Metal C Support: Input

After the second colon are “input” things
“m” means to select register n, substitute with “0(n)” and to
set the variable's address into register n “before”
Example 1 (character variable):
__asm(“ HZSCHECK ...CHECKNAME=%0”

 : /* ... */

 : “m”(theCheckName)

 : /* … */);
� HZSCHECK has a CHAR 32 CHECKNAME parameter
� input specification: "m"(theCheckName)
� within the __asm macro invocation: CHECKNAME=%0
� Compiler picks a register (for example, 2) so the generated

assembler has CHECKNAME=0(2)
� The compiler puts the address of CheckName into register

2

©2011 IBM Corporation

* 16

Metal C Support: Input

� The macro expansion knows that a specification of 0(2) is
an RS-type expression locating the variable.

� In this case, the contents of theCheckname are moved into
the parameter list (but it would have worked fine if this were
a different macro that put the address of theCheckname
into the parameter list).

©2011 IBM Corporation

* 17

Metal C Support: Input

Example 2 (integer variable):
__asm(“ DSPSERV ...BLOCKS=%0”

 : /* ... */
 : “m”(numBlocks)

 : /* … */);

� DSPSERV has a BLOCKS parameter
� input specification: "m"(numBlocks)
� within the __asm macro invocation: BLOCKS=%0
� Compiler picks a register (for example, 3) so the generated

assembler has BLOCKS=0(3)
� The compiler puts the address of NumBlocks into register 3
� The macro expansion expects that the specification of 0(3)

will locate the variable; it does
� This works

©2011 IBM Corporation

* 18

Metal C Support: Input
“r” means to select register n, substitute with “n” and to load
into register n from the variable “before” (integer or pointer) or
set the variable's address into register n “before” (character)
Example 1 (character variable):
__asm(“ HZSCHECK ...CHECKNAME=0(%0)”

 : /* ... */

 : “r”(theCheckName)

 : /* … */);

� HZSCHECK has a CHAR 32 CHECKNAME parameter
� input specification: "r"(theCheckName)
� within the __asm macro invocation: CHECKNAME=0(%0)
� Compiler picks a register (for example, 4) so the generated

assembler has CHECKNAME=0(4)
� The compiler puts the address of CheckName into register

4

©2011 IBM Corporation

* 19

Metal C Support: Input

� The macro expansion knows that a specification of 0(4) is
an RS-type expression locating the variable.

� In this case, the contents of theCheckname are moved into
the parameter list (but it would have worked fine if this were
a different macro that put the address of theCheckname
into the parameter list).

� This “r” form has identical behavior to the “m” form shown
earlier

©2011 IBM Corporation

* 20

Metal C Support: Input

Example 2 (character variable)
__asm(“ HZSCHECK ...CHECKNAME=(%0)”
 : /* ... */

 : “m”(theCheckName)

 : /* … */);

� within the __asm macro invocation: CHECKNAME=(%0)
� The macro expansion knows that a specification of (4) is a

register expression locating the variable
� Same results as Example 1
Which is better? If the macro is going to do the "move", these
are identical. If the macro is going to pass the address, the
second form saves a "LA" instruction. Consider looking at the
assembler macro expansion if you want to manage down to
this level of detail.

©2011 IBM Corporation

* 21

Metal C Support: Input

Example 3 (integer variable):
__asm(“ DSPSERV ...BLOCKS=0(%0)”

 : /* ... */

 : “r”(numBlocks)

 : /* … */);

� DSPSERV has a BLOCKS parameter
� input specification: "r"(numBlocks)
� within the __asm macro invocation: BLOCKS=0(%0)
� Compiler picks a register (for example, 3) so the generated

assembler has BLOCKS=0(3)
� The compiler puts the contents of NumBlocks into register

3
� The macro expansion expects that the specification of 0(3)

will locate the variable, not be contents of the variable.
WRONG!

� but "r"(&numBlocks) works

©2011 IBM Corporation

* 22

Metal C Support: Input

Example 4 (integer variable):
__asm(“ DSPSERV ...BLOCKS=(%0)”

 : /* ... */

 : “r(numBlocks)”

 : /* … */);

� input specification: "r"(numBlocks)
� within the __asm macro invocation: BLOCKS=(%0)
� The macro expansion expects that the register

specification of (3) will locate the variable, not be the
(contents of the) variable.

� Same as before: this does not work

©2011 IBM Corporation

* 23

Metal C Support: Input “m” or “r”?

The "m" form is more consistent -- it does not change
behavior based on data type. And even if sometimes a macro
requires that when you use the register form the "value" be in
there, and sometimes the "address of the value" be in there,
by using the "m" form we do not have to care (as with the “m”
form we never end up using the register form). I strongly
recommend the “m” form.

©2011 IBM Corporation

* 24

Metal C Support: Clobber List

After the (optional) third colon is the Clobber list
__asm(" HZSFMSG REQUEST=CHECKMSG,"

"MGB=%3,"

"RETCODE=%0,"

"RSNCODE=%1,"

"MF=(E,%2,COMPLETE)"

: "=m"(theRetcode), "=m"(rsn), "=m"(PListFMsg)

: "m"(MGB)

: "r0","r1","r14","r15");

� A comma-separated list from among "r0", "r1", ..., "r15"
identifying the registers known not to be preserved within
the __asm block. Among other things, the Clobber list tells
the compiler regs it cannot use.

� Example: : “r0”, “r1”, “r14”, “r15”

©2011 IBM Corporation

* 25

Metal C Support: Recommendations

Recommendations
� Always use "m" form for macro for outputs and individual

inputs
� Identify any registers that are clobbered using the "clobber

list". For any z/OS service, unless explicitly documented
otherwise, identify regs 0,1,14,15 as clobbered (and any
others that are identified in the service's documentation).
This not only makes sure the compiler knows that those
registers will no longer have their previous values, but also
keeps the compiler from assigning to those registers.

©2011 IBM Corporation

* 26

Metal C Support: Things to Notice

� Symbols are numbered in order of specification, the first
being symbol 0.

� For multiple statements, use "\n" at the end of each.
� For "continuation" lines: the compiler will take care of this.

Be sure, as with an assembler macro, to have the comma
delimiters between keywords. For continuation, do not start
with a blank – the compiler concatenates the individual
lines together, so an extra blank would cause problems.

� For each statement / new line, start with a blank if you have
no label.

©2011 IBM Corporation

* 27

Metal C Support: Things to Notice (cont)

� What if you know that it's an output, but you have no idea if
the macro will
�pass its address to the service (and in the service the

output is set)
�set a field in the parameter list, after the service the

macro moves from the parameter list to your variable?
� The good news: you don't need to care. In both cases, it is

fine to tell the macro a register specification such as
thekey=(somereg) or an RS-type specification such as
thekey=0(somereg)

� In many cases "m" form is just like "r" form, you just specify
the "m" form without parens, and the "r" form with parens,
and you don't specify the "&" on the “m” form.

©2011 IBM Corporation

* 28

Metal C Support: Assembler Mapping Macros

To insert non-executable assembler:
#pragma insert_asm(“[label] statement”)
For example,
#pragma insert_asm(" CVT DSECT=YES,LIST=NO")
� The compiler places the inserted statement at an

appropriate place (this turns out to be at the end of the
module, where a DSECT will not cause difficulties).

©2011 IBM Corporation

* 29

Metal C Support: List and Execute forms

� List form defaults to 256 bytes, but you can use DS:nnn
(e.g., DS:100) to define a length other than 256 (specified
in decimal). This alternate form is necessary if the length is
> 256. For cases where the length <= 256, this can save
space (to the extent that you care).

� Allocate space for the list form in dynamic storage.

©2011 IBM Corporation

* 30

Metal C Support: List and Execute (cont)

� (For some macros) allocate space for the initialized list
form in static storage, and copy from the static copy to the
dynamic copy before using the execute form. The static list
form should be in global scope so that it is part of the
compiler-produced static data for the module.

� (For other macros) just use the execute form. Many macros
that have no parameters specifiable on the list form support
a "COMPLETE" option which indicates to specify
everything on the execute form. When using COMPLETE,
you do not need an initialized list form (copied from a static
form) before using the execute form. IARV64 is one such
macro. COMPLETE is the default for this and other such
macros.

©2011 IBM Corporation

* 31

Assembler Macro Examples Intro

Assembler macros typically let you code
� RS form: KEYWORD=rs_type_expression such as

KEYWORD=0(reg)
The name comes from RS-type (base+displacement)
instruction format

� KEYWORD=some_variable is also considered RS-form
� Some macros let you code RX form disp(index,base)
� register form: KEYWORD=(reg)
� (For positional parameters, the "KEYWORD=" would not be

part of the specification)

©2011 IBM Corporation

* 32

Assembler Macro Examples Intro

� Because of the way that the compiler creates "internal"
names based on the variable names you coded with, we
will not use the KEYWORD=some_variable form as
typically the assembler will not know of your metal C
variable by its metal C name.

� We will mostly use the RS form.
� Notation to be used in the slides: register nX is the general

register assigned by the compiler, associated with
substitution specification X.

©2011 IBM Corporation

* 33

Assembler Macro Examples Intro

For a given macro parameter, you need to know the
requirements of the parameter (its data type, its size) and
what you specify.
� For example, consider this from macro HZSADDCK
,CHECKNAME=checkname
...
To code: Specify the RS-type address, or address in register
(2)-(12), of a 32-character field.
� Where an RS-type address is "base(displacement)" such

as "0(4)" indicating a displacement of 0 bytes from the
base in register 4

©2011 IBM Corporation

* 34

Assembler Macro Examples Intro

� As long as we can get the assembler specification to be
"right", we will be in good shape.

� Suppose we have
char thename[32];
in our program.

� We cannot simply code our __ASM to have
CHECKNAME=thename because the compiler may not
surface "thename" to the assembler.

� But if we can get the address of "thename" into a register R
and get CHECKNAME=0(R) within the __ASM, we will be
all set.

� This is what C's symbol substitution lets you do -- the
compiler gets to pick which register, and you get to refer to
that register symbolically.

©2011 IBM Corporation

* 35

HZSxxxxx macros

The IBM Health Checker for z/OS provided mappings for its
control structures and for its constants in z/OS 1.12 to use
within metal C. No changes are made to the executable
assembler macros, due to the presence of the metal C
symbolic substitution support.

©2011 IBM Corporation

* 36

HZSFMSG

__asm(" HZSFMSG MF=(L,PListFMsg)": "DS"(PListFMsg)) ;

__asm(" HZSFMSG REQUEST=CHECKMSG,"

"MGB=%3,"

"RETCODE=%0,"

"RSNCODE=%1,"

"MF=(E,%2,COMPLETE)"

: "=m"(rc), "=m"(rsn), "=m"(PListFMsg)

: "m"(MGB)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 37

HZSFMSG symbolic parameters

� parameter 0 -- output "=m"(rc). Put the address of rc into
register n0 before the expansion. The macro sees
RETCODE=0(n0)

� parameter 1 -- output "=m"(rsn). Put the address of rsn into
register n1 before the expansion. The macro sees
RSNCODE=0(n1)

� parameter 2 -- output "=m"(PListFMsg). Put the address of
PListFMsg into register n2 before the expansion. The
macro sees MF=(E,0(n2),COMPLETE)

� parameter 3 -- input "m"(MGB). Put the address of MGB
into register n3 before the expansion. The macro sees
MGB=0(n3)

©2011 IBM Corporation

* 38

HZSADDCK
� inputs: checkOwner, checkName, date, reasonlen, reason,

parmslen, parms, entry code, exitrtn, checkrtn, msgtbl
� outputs: Handle
� Has so many parameters that the compiler cannot choose

a unique register for each. We will explore an approach
that does not require a unique register for each
�Define a struct to hold the data so that we can access

all the struct fields using one register (which will contain
the address of the struct), There could be extra data
movement. (You might have information in "one place"
and then move it to the struct in order to use it. That is a
limitation of the metal C support.)

©2011 IBM Corporation

* 39

HZSADDCK
typedef struct checkInfo_s {

int entry; /* unique value for a check * /

char owner[16]; /* check owner * /

char name[32]; /* check name * /

char date[8]; /* YYYYMMDD * /

char exitRtn[8]; /* exit routine name * /

char checkRtn[8]; /* check routine name * /

char *msgtbl; /* the message table * /

int reasonLen; /* 1 - 126 * /

char *reason; /* Up to 126 char string * /

int parmsLen; /* 1 - 256 * /

char *parms; /* Up to 256 char string * /

} tCheckInfo;

tCheckInfo checkInfo;

©2011 IBM Corporation

* 40

HZSADDCK

� Note that in this example, the struct contains the address of
the reason and the address of the parms, not the reason
and parms themselves.

� To notice: for "continuation" lines: the compiler will take
care of this. Be sure, as with an assembler macro, to have
the comma delimiters between keywords. For continuation,
do not start with a blank.

©2011 IBM Corporation

* 41

HZSADDCK
__asm(" HZSADDCK MF=(L,PListAddck)": "DS"(PListAddc k));

__asm(" HZSADDCK ACTIVE,"

 "SEVERITY=LOW,"

 "INTERVAL=ONETIME,"

 "USS=NO,"

 "ENTRYCODE=0(%3)," /* Based on checkInfo stru ct */

 "CHECKOWNER=4(%3),"

 "CHECKNAME=20(%3),"

 "DATE=52(%3),"

 "REASONLEN=80(%3),"

 "REASON=(%4),"

 "PARMSLEN=88(%3),"

 "PARMS=(%5),"

 "EXITRTN=60(%3),"

 "CHECKROUTINE=68(%3),"

©2011 IBM Corporation

* 42

HZSADDCK

 "MSGTBL=76(%3),"

 "RETCODE=(%0),"

 "RSNCODE=(%1),"

 "MF=(E,(%2),COMPLETE)"

: "=r"(rc), "=r"(rsn)

: "r"(&PListAddck), "r"(&checkInfo), "r"(checkInfo. reason),

 "r"(checkInfo.parms)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 43

HZSADDCK: symbolic parameters
� parameter 0 -- output "=r"(rc): Put the address of rc into register

n0 before the expansion. The macro sees RETCODE=0(n0)
� parameter 1 -- output "=r"(rsn): Put the address of rc into register

n1 before the expansion. The macro sees RSNCODE=0(n1)
� parameter 2 -- input "r"(&PListAddck)

�put the address of PListAddck into register n2 before the
expansion. The macro sees MF=(E,(n2),COMPLETE) so
uses that register for the address of the parameter list. Note
that even though PListAddck is written into, it is identified as
an input. This is a drawback with use of the "r" form for
parameter lists.

� parameter 3 -- input "r"(&checkInfo)
�put the address of checkInfo into register n3 before the

expansion. The macro sees ENTRYCODE=0(n3) and
CHECKOWNER=4(n3), etc. These provide the RS-type
specifications for various parameters which end up being
moved into the parameter list.

©2011 IBM Corporation

* 44

HZSADDCK: symbolic parameters

� parameter 4 -- input "r"(checkInfo.reason)
�since this is a pointer, put the value of checkInfo.reason into

register n4 (hence the address of the reason) before the
expansion. The macro sees REASON=(n4) which indicates
that the address of the reason is in n4

� parameter 5 -- input "r"(checkInfo.parms)
�since this is a pointer, put the value of checkInfo.parms into

register n5 (hence the address of the parms) before the
expansion. The macro sees PARMS=(n5) which indicates
that the address of the parms is in n5

©2011 IBM Corporation

* 45

HZSADDCK

What don't we like about this?
� That you need different techniques for the character items

than for the pointer items.
� That the parameter list must be identified as an input.
� That you must hardcode the offsets. This is not friendly but

there is no linguistic alternative provided.

©2011 IBM Corporation

* 46

HZSADDCK alternatives

Are there other forms we could have used?
� Yes for the parameter list: "=m"(PListAddck) with

MF=(E,%2,COMPLETE)
� Yes for reason: "m"(checkInfo.reason) with REASON=%4
� Yes for parms: "m"(checkInfo.parms) with PARMS=%5
� Yes for checkinfo (with a little trick): The "m" form always

substitutes 0(n) and we need (for example) 4(n3). But we
can accomplish this by coding 4+%3 which will result in
4+0(n3) which is equivalent to 4(n3).

©2011 IBM Corporation

* 47

HZSADDCK alternative
__asm(" HZSADDCK ACTIVE,"

 "SEVERITY=LOW,"

 "INTERVAL=ONETIME,"

 "USS=NO,"

 "ENTRYCODE=0+%3," /* Based on checkInfo struc t */

 "CHECKOWNER=4+%3,"

 "CHECKNAME=20+%3,"

 "DATE=52+%3,"

 "REASONLEN=80+%3,"

 "REASON=%4,"

 "PARMSLEN=88+%3,"

 "PARMS=%5,"

 "EXITRTN=60+%3,"

 "CHECKROUTINE=68+%3,"

©2011 IBM Corporation

* 48

HZSADDCK alternative

 "MSGTBL=76+%3,"

 "RETCODE=%0,"

 "RSNCODE=%1,"

 "MF=(E,%2,COMPLETE)"

: "=m"(rc), "=m"(rsn), "=m"(PListAddck)

: "m"(checkInfo), "m"(checkInfo.reason),

 "m"(checkInfo.parms)

: "r0","r1","r14","r15");

Note the use of “offset+%3”

©2011 IBM Corporation

* 49

HZSADDCK (cont)

� If the full reason and/or the full parms string were placed
within the structure, rather than the pointer to them, the
technique used with parameter 3 could have been used for
reason and parms.

©2011 IBM Corporation

* 50

HZSADDCK (cont)
typedef struct checkInfo_s2 {

int entry; /* unique val for a check */

char owner[16]; /* check owner */

char name[32]; /* check name */

char date[8]; /* YYYYMMDD */

char exitRtn[8]; /* exit routine name */

char checkRtn[8]; /* check routine name */

char *msgtbl; /* the address of the

 Message table */

int reasonLen; /* 1 - 126 */

char reason[126]; /* Up to 126 char string */

char padding[2]; /* Round to word boundary */

int parmsLen; /* 1 - 256 */

char parms[256]; /* Up to 256 char string */

} tCheckInfo2;

tCheckInfo2 checkInfo2;

©2011 IBM Corporation

* 51

HZSADDCK
__asm(" HZSADDCK ACTIVE,"

 "SEVERITY=LOW,"

 "INTERVAL=ONETIME,"

 "USS=NO,"

 "ENTRYCODE=0+%3," /* Based on checkInfo struc t */

 "CHECKOWNER=4+%3,"

 "CHECKNAME=20+%3,"

 "DATE=52+%3,"

 "REASONLEN=80+%3,"

 "REASON=84+%3,"

 "PARMSLEN=212+%3,"

 "PARMS=216+%3,"

 "EXITRTN=60+%3,"

 "CHECKROUTINE=68+%3,"

©2011 IBM Corporation

* 52

HZSADDCK

 "MSGTBL=76+%3,"

 "RETCODE=%0,"

 "RSNCODE=%1,"

 "MF=(E,%2,COMPLETE)"

: "=m"(rc), "=m"(rsn), "=m"(PListAddck)

: "m"(checkInfo2)

: "r0","r1","r14","r15");

What's different? Some of the offsets, and the fact that reason and
parms now use register n3

©2011 IBM Corporation

* 53

HZSADDCK (use literals)

__asm(" HZSADDCK "

 "CHECKOWNER==CL16'IBMSAMPLE',"

 "CHECKNAME==CL32'HZS_SAMPLE_REMOTE_MC_HZSCPARS',"

 "ACTIVE,"

 "SEVERITY=LOW,"

 "REMOTE=YES,"

 "USS=NO,"

 "HANDLE=%4,"

 "PETOKEN=%3,"

 "INTERVAL=ONETIME,"

 "VERBOSE=NO,"

 "DATE==CL8'20090212',"

 "REASONLEN==A(41),"

 "REASON==CL41'Sample Metal C health check with HZ SCPARS',"

©2011 IBM Corporation

* 54

HZSADDCK (use literals, cont)

 "PARMSLEN==A(38),"

 "PARMS==CL38'PARM1(1,999),PARM2(100),PARM3(CH OICE1)',"

 "RETCODE=%0,"

 "RSNCODE=%1,"

 "MF=(E,%2,COMPLETE)"

 : "=m"(rc), "=m"(rsn), "=m"(PListAddck)

 : "m"(PEToken), "m"(checkHandle)

 : "r0","r1","r14","r15");

� Metal C sets up addressability to the literal area using GR 3.

©2011 IBM Corporation

* 55

HZSADDCK: Recommendations

Recommendations
� Use "m" form for an input structure that you will use for

several data items (with the "offset+" notation); use "r" form
only if you strongly prefer using the "offset(" notation)

©2011 IBM Corporation

* 56

HZSCHECK

__asm(" HZSCHECK MF=(L,PListCheck)": "DS"(PListChec k));

__asm(" HZSCHECK REQUEST=RUN,"

"CHECKOWNER=%3,"

"CHECKNAME=%4,"

"RETCODE=%0,"

"RSNCODE=%1,"

"MF=(E,%2,COMPLETE)"

: "=m"(rc), "=m"(rsn), "=m"(PListCheck)

: "m"(ckOwner)

, "m"(ckName)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 57

HZSCHECK symbolic parameters

� parameter 0 -- output "=m"(rc). Put the address of rc into register
n0 before the expansion. The macro sees RETCODE=0(n0)

� parameter 1 -- output "=m"(rsn). Put the address of rsn into
register n1 before the expansion. The macro sees
RSNCODE=0(n1)

� parameter 2 -- output "=m"(PListCheck). Put the address of
PListCheck into register n2 before the expansion. The macro
sees MF=(E,0(n2),COMPLETE)

� parameter 3 -- input "m"(ckOwner). Put the address of ckOwner
into register n3 before the expansion. The macro sees
CHECKOWNER=0(n3)

� parameter 4 -- input "m"(ckName). Put the address of ckName
into register n4 before the expansion. The macro sees
CHECKNAME=0(n4)

©2011 IBM Corporation

* 58

HZSPREAD

__asm(" HZSPREAD MF=(L,PListPRead)": "DS"(PListPRea d));

__asm(" HZSPREAD CHECKOWNER=%5,"

"CHECKNAME=%6,"

"IPL=PRIOR,"

"INSTANCE=MOSTRECENT,"

"STARTBYTE=0,"

"BUFFER=%0,"

"DATALEN=%7,"

"BYTESAVAIL=%1,"

©2011 IBM Corporation

* 59

HZSPREAD (cont)

"RETCODE=%2,"

"RSNCODE=%3,"

"MF=(E,%4)"

: "=m"(PReadBuffer)

, "=m"(PReadBytes)

, "=m"(rc)

, "=m"(rsn)

, "=m"(PListPRead)

: "m"(ckOwner)

, "m"(ckName)

, "m"(persistentDataBytes)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 60

HZSPREAD symbolic parameters

� parameter 0 -- output "=m"(PReadBuffer). Put the address of
PReadBuffer into register n0 before the expansion. The macro
sees BUFFER=0(n0)

� parameter 1 -- output "=m"(PReadBytes). Put the address of
PReadBytes into register n1 before the expansion. The macro
sees BYTESAVAIL=0(n1)

� parameter 2 -- output "=m"(rc). Put the address of rc into register
n2 before the expansion. The macro sees RETCODE=0(n2)

� parameter 3 -- output "=m"(rsn). Put the address of rsn into
register n3 before the expansion. The macro sees
RSNCODE=0(n3)

� parameter 4 -- output "=m"(PListPRead). Put the address of
PListPRead into register n4 before the expansion. The macro
sees MF=(E,0(n4))

©2011 IBM Corporation

* 61

HZSPREAD symbolic parameters (cont)

� parameter 5 -- input "m"(ckOwner). Put the address of ckOwner
into register n5 before the expansion. The macro sees
CKOWNER=0(n5)

� parameter 6 -- input "m"(ckName). Put the address of ckName
into register n6 before the expansion. The macro sees
CKNAME=0(n6)

� parameter 7 -- input "m"(persistentDataBytes). Put the address
of persistentDataBytes into register n7 before the expansion.
The macro sees DATALEN=0(n7)

©2011 IBM Corporation

* 62

HZSPWRIT

__asm(" HZSPWRIT MF=(L,PListPWrit)": "DS"(PListPWri t));

__asm(" HZSPWRIT BUFFER=%3,"

"DATALEN=%4,"

"RETCODE=%0,"

"RSNCODE=%1,"

"MF=(E,%2)"

: "=m"(rc)

, "=m"(rsn)

, "=m"(PListPWrit)

: "m"(PWritBuffer)

, "m"(persistentDataBytes)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 63

HZSPWRIT symbolic parameters

� parameter 0 -- output "=m"(rc). Put the address of rc into register
n0 before the expansion. The macro sees RETCODE=0(n0)

� parameter 1 -- output "=m"(rsn). Put the address of rsn into
register n1 before the expansion. The macro sees
RSNCODE=0(n1)

� parameter 2 -- output "=m"(PListPWrit). Put the address of
PListPWrit into register n2 before the expansion. The macro
sees MF=(E,0(n2))

� parameter 3 -- input "m"(PWritBuffer). Put the address of
PWritBuffer into register n3 before the expansion. The macro
sees BUFFER=0(n3)

� parameter 4 -- input "m"(persistentDataBytes). Put the address
of persistentDataBytes into register n4 before the expansion.
The macro sees DATALEN=0(n4)

©2011 IBM Corporation

* 64

STORAGE macro Gotcha

Gotcha: Not all macros treat "(reg)" as containing the address
of the variable (i.e., equivalent to "0(reg)"). Some treat "(reg)"
as containing the value and "0(reg)" as locating the value
(with the expansion doing the load). It may be worth your
while trying the assembler expansion to see what it does for
the 2 forms. And it is always worth trying to get the
information from the doc (which is, unfortunately, often weak
in this area).

©2011 IBM Corporation

* 65

STORAGE macro (cont)

Suppose we want to do a STORAGE RELEASE. We know
that we need an area address, a length, and a subpool, all of
them being inputs. We can safely use the "m" form for all
three.
__asm("STORAGE RELEASE,ADDR=%0,LENGTH=%1,SP=%2"

: /* no outputs */

: m(theAddr), m(theLength), m(theSubpool)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 66

STORAGE macro (cont)

The compiler will select 3 regs, put the address of theAddr in
one, the address of theLength in another, the address of
theSubpool in the 3rd. For example, producing
STORAGE RELEASE,ADDR=0(n0),LENGTH=0(n1),SP=0(n2)

� This will work. Well, no it won't. Because the STORAGE
macro was poorly created and misleads. The "ADDR"
keyword does not want an address, it wants an "area".

� Our previous attempt would attempt to "free the pointer"
rather than "free the area".

©2011 IBM Corporation

* 67

STORAGE macro (cont)

If we have addressability to "theArea" and we also have the
address of that area within a variable "theAddr", we have
choices:
� We can specify theArea instead of theAddr and use the

preceding form
� We can use theAddr and specify the "r" form.with register

notation "r"(theAddr)
�the compiler will place the contents of theAddr into

register n0
�...ADDR=(%0) resulting in ...ADDR=(n0)
�the macro knows that what is in register n0 is the

address of the area
�or ... ADDR=0(%0) resulting in ...ADDR=0(n0)
�the macro knows that 0 past register n0 is the area

©2011 IBM Corporation

* 68

MVCDK: operands in architected registers

__asm(" L 0,%1 \n "

 " L 1,%3 \n "

 " MVCDK %0,%2"

: "=m"(target)

: "m" (lenMinusOne)

, "m"(source)

, "m" (destkey)

: "r0", "r1");

©2011 IBM Corporation

* 69

MVCDK (alternative)

__asm(" LR 0,%1 \n "

 " LR 1,%3 \n "

 " MVCDK %0,%2"

: "=m"(target)

: "r" (lenMinusOne)

, "m"(source)

, "r" (destkey)

: "r0","r1");

©2011 IBM Corporation

* 70

MVCDK (cont)

Note: If target is the simplest definition, something like
char target[n];
then you need to specify target[0] or *target (asterisk-target)
instead of target in the output specification because the output is
treated like an assignment (needing an "lvalue") which an array
cannot be. Identifying target as in input would satisfy the semantic
requirement but would fail to inform the compiler that target is
changing.

To notice:
For multiple statements, use "\n" at the end of each

©2011 IBM Corporation

* 71

ALR (operands in registers)

Here's an example where the data needs to be placed into registers by
the compiler

__asm(" ALR %0,%1" : "+r"(x) : "r"(y));

Note the use of "+" for the first symbolic parameter x, since the target
operand of Add-Logical-Register first must be read (input), then operated
upon, then written/stored (output)

©2011 IBM Corporation

* 72

MVC instruction

Consider trying to move from a source to a target (ignoring that you
can do this without resorting to assembler):
__asm(" MVC 0(16,%0),%1"

: "=r"(target)

: "m"(source)

: "r0" /* we do not clobber r0, but we prevent

 The compiler from choosing r0 since it

 would not work with r0 */

);

which might expand to
MVC 0(16,n0),0(n1).

This, unfortunately, does not work. An “r” form output does not set
the register to the address of the variable before the assembler

©2011 IBM Corporation

* 73

MVC (cont)

This is a case where you must lie to the compiler in order to get
things to work (!!).

__asm(" MVC 0(16,%0),%1"

: /* no outputs */

: "r"(target) /* target is indicated as "input" * /

, "m"(source)

: "r0"

);

©2011 IBM Corporation

* 74

Access Register mode

� It appears that the compiler isn't going to help much
� It lets you define a "far pointer" (this works well)
� But when you use the "m" form (or any other form it

appears), only a GR is set, not the associated AR.
� Thus it is "up to you" to set the AR too.

©2011 IBM Corporation

* 75

Access Register mode MVC

Consider our MVC example with an AR-qualified source to an AR-
qualified target. We can easily get the compiler to place the
address of the target and source into registers but we need to go
further to get the corresponding ALETs into those same registers.

Suppose that you had extracted the ALET for each of the target
and the source, perhaps using the extractor
 unsigned int __get_far_ALET(void * __far p);

©2011 IBM Corporation

* 76

Access Register mode MVC

__asm(" SAR %0,%1\n"

 " SAR %2,%3\n"

 " MVC 0(16,%0),0(%2)"

: /* no outputs */

: "r"(target)

, "r"(targetALET)

, "r"(source)

, "r"(sourceALET)

: "r0"

);

©2011 IBM Corporation

* 77

AR Mode MVC (cont)

If you had used the "m" form instead of the "r" form for targetALET
and sourceALET, you could use
LAM x,x,%n substituted to LAM x,x,0(nY)

instead of

SAR x,%n substituted to SAR x,nY

©2011 IBM Corporation

* 78

Requirements

� If your program is running in AR Address Space Control
(ASC) mode and invoking an assembler macro, be sure
that SYSSTATE ASCENV=AR
is in effect (which can be done via __asm).

� If your program is running in AMODE 64 and invoking an
assembler macro, be sure that
SYSSTATE AMODE64=YES
is in effect (which can be done via __asm).

©2011 IBM Corporation

* 79

ATTACH

What might an assembler use of ATTACH macro be?
 MVC AttachDyn,AttachStatic

 ATTACH EPLOC=theEP,DCB=theDCB,SF=(E,Attac hDyn)

 ST R1,theTCB

 ST R15,theRC

...

AttachDyn ATTACH SF=L

...

AttachStatic ATTACH SF=S,JSTCB=NO,SM=PROB,SVAREA=YE S

Note that ATTACH has 2 parameter lists, and the one for the
service is identified by SF, not MF. Before using theTCB we must,
of course, check theRC.

©2011 IBM Corporation

* 80

ATTACH (cont)

What would we do in metal C?
In global scope
__asm("AttachStatic ATTACH SF=L,"

 "JSTCB=NO,SM=PROB,SVAREA=YES"

: "DS"(AttachStatic));

©2011 IBM Corporation

* 81

ATTACH (cont)

In local scope
__asm("AttachDyn ATTACH SF=L": "DS"(AttachDyn));

AttachDyn = AttachStatic;

__asm(" ATTACH EPLOC=%3,DCB=%4,"

 "SF=(E,%2)\n"

 " ST 1,%1\n"

 " ST 15,%0"

: "=m"(theRC), "=m"(theTCB), "=m"(AttachDyn)

: "m"(theEP), "m"(theDCB)

: "r0","r1","r14","r15");

©2011 IBM Corporation

* 82

Summary

� You really can invoke z/OS macros from within Metal C.
� Keep the compiler informed.
� Don't be afraid to check the generated assembler code to

see that it did what you wanted.

©2011 IBM Corporation

* 83

Publications

� z/OS V1R12.0 Metal C Programming Guide and Reference
SA23-2225-03

� z/OS V1R12.0 XL C/C++ Language Reference
SC09-4815-10

